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SECTION I

INTRODUCTION

The performance of airborne electrooptical systems may be seriously

affected by the angular as well as the linear vibration. Unlike the

linear vibration, very little experimental data are available for the

angular vibration. The purpose of this report is to investigate the

relationship between the linear and angular structural vibration

characteristics thereby developing prediction schemes for the angular

vibration amplitude from a prescribed linear vibration environment.

Precisely speaking, the linear vibration refers to the transverse

deflection, whereas the angular vibration is due to the rotary mode of

internal bending, the effect of which is included in the Timoshenko

beam equation (Reference 1). For a small amplitude vibration, the angular

(rotary) deflection can be related to the slope of the linear (transverse)

displacement. This provides a theoretical basis for relating the linear

and angular vibrations.

As a theoretical model, Section II considers the Bernoulli-Euler

beam with simply supported ends and formulates the stochastic dynamics

for the linear and angular deflections. For maximal simplicity, an

idealized random forcing function is imposed to generate the stationary

response dynamics. Since the stochastic beam analysis has already

been presented (References 2 and 3), only the main steps of analysis

which yield the linear and angular variances as infinite series will be

summarized. It is important to note that the response variance has

the same form for both the beam and plate problems when the normal-

mode representation is used. This is why a beam analysis can provide

the basic relationship of stochastic dynamics which is also valid for

the plate structure. To be realistic, the aircraft fuselage must be

modeled by a stringer stiffened cylindrical shell. Since such a model

is not amenable to qualitative analysis, an alternate approach would

be to build up the aircraft fuselage by piece-wise flat panels joined

together by stiffeners. The motivation for the present analysis is that

a beam/plate model can describe certain essential features of aircraft

fuselage vibration in a qualitative manner.

1
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In Section III, an attempt is made to derive a qualitative relation-

ship between the linear and angular rms amplitudes, which is valid for

the general vibration environment. This has been accomplished by

averaging the linear and angular variances over the beam, thereby
integrating away the normal modes on which the analysis of Section II

is based. By truncating the variances to lowest orders, a simple

prediction (Equation 27) has been obtained to relate the beam-averaged

linear and angular rms amplitudes. However, due to the scarcity of

angular vibration data, comparisons of predicted and measured angular

vibration are necessarily quite limited.

Because of the difficulties associated with many angular vibration

measurement techniques, a practical approach is to calculate a discrete

angle by differencing two linear accelerometer signals and then dividing

by the separation distance. The main goal of Section IV is to provide

a prediction for the discrete angular vibration. Based on some laboratory

test data, the accuracy of the prediction scheme as given by Equation 33

is about ± 20% of the measured angular vibration. Although quite crude,

it bolsters one's confidence in that the prediction scheme is intended

for qualitative purposes and the present vibration data are limited

only to a gross confirmation of predictions.

The discrete angle defined by the difference of two linear acceler-

ometer signals is not well suited for statistical analyses, especially

when the separation distance becomes small. This is because the

differencing operation tends to accentuate the noise part of random

signals. Consequently, the smaller the separation distance, the more
acute the differencing error. In Section V an alternate definition

is presented of the discrete angular vibration which involves the

difference of elements of the covariance matrix and not the random

signals themselves. Surprisingly, such a definition of the angular

motion has not yet been explored. Its practical implication is being

investigated and will be discussed in a later report.

2
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SECTION II

THEORETICAL ANALYSIS

The transverse deflection of a Bernoulli-Euler beam (Figure 1) is

governed by the equation

6 2 y ay El 4y= f(--T+-- ,:(1)

where El is the flexural rigidity, m is the mass/unit length of the

prismatic beam, 6 is the damping constant, and f(x,t) is the

excitation/mass. It will be assumed that the forcing function splits

into the spatial part (q(x)) and the temporal part (g(t))

f (x, t)= q (x) g (t).

As pointed out in the Introduction, the Timoshenko beam incorporates the

angular effect of internal bending, whereas the Bernoulli-Euler beam

does not. Therefore, it might appear that the use of Equation 1 is not

appropriate for angular vibration work. As shown in the Appendix,

however, both beam theories give the same prediction scheme; hence it is

more economical to base the analysis on Equation 1, which is somewhat

simpler than the Timoshenko beam equation. The stochastic dynamics

of Equation I have already been investigated by Eringen (Reference 2),

and Bogdanoff and Goldberg (Reference 3), so that it suffices to

outline only the main steps.

Y(X,t)

Figure 1. Simply Supported Beam

3
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1. LINEAR AND ANGULAR DEFLECTIONS

For the simply supported beam of length L, the undamped normal

mode sin(n7x/L) can be used to express the spatial behavior

(x, 0 Yn (t) sin ( n7rX)(2a)

n:I

q( qn sin (-"7) (2b)
n:lI

The insertion of Equation 2 into Equation 1 gives
2

Yn + 2/R 'n + wn Yn= qn g(t),

where the dot denotes /Dt, and wn = (nTr/L) 4 EI/m. The particular

solution with zero initial conditions is

Yn (t) -qn t0 hn(t-r) g (T) dr. (3)

Here the impulse-response function is given by

hn  wn xp-t sin wn t (4)

oaJn

where wn 2 2. By letting to - , one may rewrite Equation 3 as

YntM):qn o=hn(Tr) g(t-T) dT (5

The introduction of Equation 5 into Equation 2a would then yield the

linear deflection

Y(X,t)= I sin (n7x)qn f hn(T) g ( t -T) dr, (6)
n=0

subject to the arbitrary forcing. For a small amplitude vibration, the

angular deflection O(x,t) is approximated by the derivative dy(x,t)/dx,

4



AFFDL-TR-76-56

00G
n1 (L) o L ) n( )g(t-r)dr (7)

Thus, the linear and angular deflections are formally expressed by

Equations 6 and 7 respectively.

2. VIBRATION AMPLITUDE

When the forcing function is random, so are the linear and angular

deflections. Let us therefore compute the variance of y(x,t)

<Y2 (,1t) > s ( ) sin (T)<Qn qk>
n,k

f f h n ( rI) h k ( 2 ) <g9( t--r, ) g ( t- r2) >d rId T2 ,
0 0

where < > denotes statistical average or expectation. It must be

pointed out that the statistical independence of q(x) and g(t) has been
invoked in Equation 8, which greatly simplifies the subsequent analysis.

For instance, this assumption cannot be applied when a beam or plate

is excited by convecting turbulent pressure fluctuations (References 4

and 5). For stationary random forcing, the correlation < q(t-Tl)q(t-T2 ) >

is a function of the time difference T = 2- TI. By the Wiener-Khinchin

theorem (Reference 6), the stationary correlation of the forcing

function denoted by R (T) is related to the power spectral density (psd)

denoted by F (w).

Rg(r) = f Fg(w) exp(i r) dw,

C (9)

Fg(w) = (1/70 f Rg (r) exp (-iwr) dT.
- C

5



AFFDL-TR-76-56

Under the stationary forcing, it is evident that Equation 8 is inde-

pendent of t, hence

<y 2 (x) > I sin(rx)sin ( ) <q n q k > Ink, (10)
n,k

where

'nk f f gd F, f hn ( T)e- IWT, dr, f hk (r2)e 'wr2 d"2

Similarly, the stationary angular variance is given by
8 2(X)> = - n nkcos ( nrx) COS(k7rx) <q > (12)

S )2  
-LnqL nk

n,k

With the use of Equation 4, one finds by a simple computation that

cc IJ h n ( 1l) exp (-iwT1) d-t, = 2 =+2iH-w () ,

which is the frequency-response function. Hence, Equation 11 may be

put in the compact form

Ink  f ,TF Mo Hn (MJ H*(wu) dwu, (13)

where * denotes the complex conjugate. When the normal-mode repre-

sentation is used (Reference 2), the form of linear and angular variances

is the same for both the beam and plate problems in that it consists

of the normal modes, the spatial correlation < qnqk >, and the 'nk.

To explicitly evaluate Equation 13, one must further specify F (N).g
For a typical R (T) of the exponential form, the corresponding psd hasg
the form

Fg (W) = F 0 o (14)

6
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where F0 is a scaling factor, and w0 is the relaxation constant. In the

limit as w0 0, Equation 14 reduces to the white-noise spectrum

Fg(W) Fo . (15)

For simplicity, let us evaluate Equation 13 under the white-noise

forcing Equation 15. The result by contour integration is

4-jrPF0
Ink W 2  4I'2)2 +(4 w')2 (16)

which is 27i times the residues at w = i$ ± w'. For n = k, it simplifies

to
4,8W (17)

4
From the definition of wn , it is seen that Inn u 1/n , hence the

magnitudes of Inn fall off rapidly with increasing n. Magnitudes of
Ink (n/k) with respect to Inn will be assessed in Section 11-4.

3. RANDOM FORCING q(x)

In view of Equation 2b, the mean value < qnqk > has the form

L L
<fifk > f d y R,,[x,y) sin si (18

where R q(x,y) = < q(x)q(y) > is the spatial forcing correlation. When

spatial homogeneity is assumed, R q(x,y) is a function of the separation
distance only. By letting z = x - y, Equation 18 can then be put in the

form

2 L dy sin (kff _ R,(z) sin (n7Tr(2+y) dz

when Rq (z) is assumed fairly sharp (Reference 7). Now expand sin(n7(z+y)/

L) = sin(nffz/L) cos(nTry/L) + cos(nTrz/L) sin(n7Ty/L). Since Rq (z) is even,

it is seen that R (z) sin(n7z/L) integrates out to zero, and henceq
Equation 18 becomes

<qnqk= 8nk Rq(z) Cos n7z) dz(19
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where the Kronecker n= 1 for n = k and = 0 for n k. For the

infinitely sharp Rq (z) = K V1z) (K being a constant), Equation 19

reduces to

<qnqk > = K8nk (20)

Under the random q(x) with no spatial correlation, the variances shown

in Equations 10 and 12 therefore become

<Y2 (x) > = Z sin 2  K Inn (21a)
n=I

2
< 8 n2 cos2  n7x K Inn* (21b)

Because Inn n 4, the series representations are convergent, even

though the total power of f(x,t) is infinite. To be more physically

realistic, the forcing correlation must exhibit both the spatial and

temporal relaxations. Allhough this can easily be incorporated by

Equations 14 and 19, suci is not needed for the present purpose.

4. LOCALIZED FORCING q(x)

In a laboratory test situation, it is most convenient to apply the

external forcing to certain points on a structure. In such a case, the

< qnqk > term is simply a qnqk. When Equation 20 is not invoked, the

variances shown in Equations 10 and 12 are double sums over n and k.

For a slightly damped beam it will be shown that Inn are orders of

magnitude larger than Ink (n # k); hence, the variances can still be

reduced to a single sum even when q(x) is nonrandom. To this end,

some lower-order Ink were computed from Equation 16 with B = 1/10, and

their relative magnitudes have been summarized in Table 1.

8
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TABLE 1

RELATIVE MAGNITUDES OF THE LOWER-ORDER Ink

Ink 11I 122 133 1 12121 113131 132 123

Magnitude 1 1/16 1/81 1/1406 1/40375 1/26406

-46n

From the table, one may therefore conclude- that Ink - n 6 for a

slightly damped structure under the white noise excitation.

9
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SECTION III

THE BEAM-AVERAGED VIBRATION RMS AMPLITUDE

Since I n -4 , the first-term approximation of Equation 21ann

introduces an error on the order of (1/16)

< y 2 b) > = sin2 (---X) KI1 . (22)

Because of the factor n2, on the other hand, the first-term truncation of

Equation 21b

2

< 8az 2( > r cs ( 7x ) K II
(23)

discards a term of the order of (1/4), which is not acceptable. To

the same order of approximation as Equation 22, the second and third

terms must then be included

<82X> (r n 2 cos 2  n7rx K1 (24)

2 .2

For a localized forcing at the mid-span (L/2), K-q sin (niT/2), so

that the second term (n = 2) will then be absent in Equation 24.

For the overall description, the variances will now be averaged over

the beam. First, by applying L 1 f L dx to both sides of Equations 22,
0

the beam-averaged rms amplitude, yrms =/L 1fL <y 2(x) > dx, has the

following form

Yrms K/2. (25)

Next, averaging Equation 24 over the beam in a similar manner, one

obtains with the use of Inn = I 1/n
4

10
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KII/
]K -2

-e-L 2 n: I ' (26)

where 0r = L-lfL < e2 x) > dx is the beam-averaged rms of
0rms  0

angular fluctuations. Note that by averaging over the beam we have

eliminated the explicit dependence of Equations 22 and 24 on the normal

modes, sin(nrx/L), which reflect the simply supported end condition.

It is therefore anticipated that Equations 25 and 26 would apply to any

beam, at least qualitatively, regardless of the end conditions. The

practical implication of beam averaging is that it frees the formulation

from a particular end condition. This is important in applications

because the boundary (or end) conditions of a structure embedded in

airframes cannot be specified precisely. By combining Equations 25 and

26, the main result of this section is

erms = A Yrms (27)

where

1, for the first-term truncation
Equation 23

A n 1/n2 )I/2  1.17, for the random q(x),

(I + 1/8)1/2 = 1.06, for the localized q(x) at L/2.

Note that only the lowest order modes contribute explicitly to the above

relation. Although Equation 27 was obtained from the beam analysis, it

should also apply to a plate along the coordinate axes. This is because

the basic structure of variance is the same for both the beam and plate

problems when the normal-mode representation is used.

Due to the difficulty in angular measurement techniques, angular

vibration data are very scarce. Also, it is almost impossible to find

a matching set of linear and angular vibration data taken concurrently at

the same location on an airframe. Some angular vibration psd have been

reported by Sher (Reference 8) during the flight tests of an NC-135

aircraft. Later, Davis (Reference 9) measured the linear vibration psd

11
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on another aircraft of the same type. Apart from the apparent difference

in aircraft and flight conditions, it is most unfortunate that the

transducer locations of Davis are not the same as those of Sher. In

spite of this, an attempt has been made to select a set of linear and

angular psd data whose transducer locations are as close as possible.

For the present comparison, Figure 30 of Davis (Reference 9) and Figure

8 of Sher (Reference 8) were chosen as a typical set of the linear and

angular psd's. They are reproduced here in Figures 2 and 3, respectively.

To estimate the rms of vertical displacements, one may approximate the
5 -2.7

psd of Figure 2 by a power formula of the form, (5 x 10- ) w , which

in essence replaces the psd by a straight line in the figure. Then,

analytically integrating this power formula over the frequency range

of [2,0], one obtains yrms = 3 x 10-3 in. Therefore, by treating the

entire fuselage as a beam-like structure, L = 2100 in., Equation 27 with

A = 1.17 yields the rms of angular vibration 0rms : 5.24 x 10-6 rad.

Now, to provide an experimental check, erms can be estimated directly

from Figure 3. Again, for convenience, the psd of Figure 3 may be

approximated by a three-piece power formula as depicted in the figure.

Then integrating this power formula over the appropriate frequency range,

the measured rms of angular vibration is estimated to be 0rms z 6.23 x 106

rad. Although the measured arms is almost 20% higher than the predicted,

such a comparison is very encouraging in that linear and angular

vibration data used here have limited correspondence. The scarcity of

vibration data impedes further confirmation of the prediction scheme.
1

Therefore, an alternate prediction will be developed in the next section

in terms of the discrete angle, which is readily measurable by the

conventional accelerometers.

1. Some additional sets of linear and angular vibration data have been
supplied by W. R. Davis, Jr. Although these data seem to support
the prediction capability of Equation 27 within + 20%, the estimation
of rms values from the raw test data involves a number of gross
approximations. Hence, the details of comparison will not be presented
here.

12
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Figure 2. PSD of Transverse Vibration
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SECTION IV

THE DISCRETE ANGLE

Conventional transducer technology does not permit a direct

measurement of angular vibration over a wide range of frequencies. In

practice, the angle is approximated by differencing two linear transducer

signals and dividing by the separation distance. That is, the discrete

angle is defined by

Ay y (x1  t) -Y (X2 , t) (28)

Ax Ax

where Ax = x1 - x2. The discrete angle will approach the true angle

O(x,t) as Ax - 0. In the actual measurement, Ax is anything but

infinitesimal, hence Equation 28 is a working definition of a measurable

angle rather than a limiting process to the true angle.

By repeating the stochastic dynamic analysis of Section II, the

variance of (Ay/Ax) can readily be computed and its first-term trunction

is

\ Ax AX (

With the use of the transformation x1 = x +Ax/2 and x2 = x -Ax/2, one

has sin(fx 1/L) - sin(ffx 2/L) = 2 cos(Tx/L) sin(ffAx/2L), hence

2 2 s in_ _r2

< AY:) )> (si(~~ ~)COS2 (2 I" K 1, 1. (30)

Again, averaging Equation 30 over the beam, the beam-averaged rms of the

discrete angle, (Ay/Ax) -L f <(Ay(x)/Ax)2>dx, has the following

15



AFFDL-TR-76-56

form similar to Equations 25 and 26

(A m (2 sin ) K I (31)
)rms

Since (2 sin('uAx/2L)/Ax) = i/L as Ax 0 0, it is seen that Equation 31

3 212reduces to Equation 26 with the factor ( 1/n replaced by unity.
n=l

The combination of Equations 25 and 31 would then yield a relationship

between the linear and discrete angular rms of vibration amplitudes

2 sin (7Lx (32)
y (x Yrms.

As pointed out before, the factor (2 sin(TAx/2L)/Ax) has the value ( /L)

in the limit as Ax - 0. In the other extreme case of Ax = L, however, it

has the value (2/L). Note that this factor varies almost 57% between the

two extreme cases. In practice, the separation distance is neither

infinitesimal nor the entire L; let us therefore choose Ax = L/2, for

which (2 sin(qAx/2L)/Ax) has the value (2,/-/L). In terms of the Ax,

Equation 32 then becomes

1A s )N Irms. (33)

This is a counterpart of Equation 27 for the discrete angle case. The

difference, however, is that Equation 33 refers to the separation

distance Ax and not the beam length L. Like Equation 27, the relation

shown in Equation 33 does not depend on the particular shape of normal

modes; the details of spatial characterization have been eliminated by

the beam averaging. In this respect, Equation 33 is an overall

description of beam vibration in terms of the primary mode, which may

qualitatively be valid regardless of the end condition.

Davis and Guckian (Reference 10) have reported some measurement of

(Ay/Ax) on a 156" x 60" x 30" bench plate externally excited to

16
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simulate flight conditions. They have presented both the linear and
angular vibration data in terms of the transfer-function magnitude.
Unfortunately, they did not report the linear vibration data of the
accelerometers from which the angular deflection was derived. It is
therefore necessary to pick out linear vibration data from their report
in such a way that the linear and angular vibration data would have the
closest correspondence. For the angular vibration data given in
Figures 54 through 57 of their report, the linear transfer-function
magnitudes of their Figures 33 and 35 were chosen as the matching linear
vibration data. To estimate the rms of fluctuations from a transfer-
function magnitude, the following procedure has been adopted; (i) Assume
a forcing psd of the form Cw-2 (C being a constant), (ii) approximate the
transfer-function magnitude by a piecewise power formula, similar to
approximating the psd by a power formula in Section III, (iii) multiply
the squared transfer-function magnitude by the forcing psd, and (iv)
integrate over the appropriate frequency range. For each of the angular
vibration data, the measured (Ay/Ax)rms is estimated by the above procedure
and compared with the predicted value based on Equation 33, as summarized

in Table 2.

Discounting the case of Roll #2 whose measurement is apparently
contaminated, one can predict by Equation 33 the measured angular rms
within less than + 20%. Although this is a fairly wide latitude, it
must be remembered that the comparison of Table 2 is subject to several
limitations. First of all, the prediction scheme (Equation 33) is
valid only qualitatively; that it can work so satisfactorily is indeed
a pleasant surprise. Second, the sets of linear and angular vibration
data do not match exactly with respect to the transducer locations.
Finally, the values of yrms and (Ay/Ax)rms estimated from the transfer-

function magnitude data are only approximate.
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SECTION V

PRACTICAL DEFINITION OF THE DISCRETE ANGULAR VIBRATION

According to Equation 28, the direct measurement of < (Ay/Ax)2 >

involves taking the difference of the signals of two accelerometers which

are separated by a predetermined distance Ax. In practice, the

differencing of random signals is not a reliable operation because it

tends to accentuate the noise part of random signals. Clearly, the

smaller the separation distance the more acute the differencing error.

An alternate definition will therefore be presented of the discrete

angular vibration amplitude which involves subtraction of the well-behaved

statistical averages and not the random signals themselves. To this end,

square the right-hand side of Equation 28 and carry out the term-by-term

averaging. The discrete angular variance is then expressed in terms of

the linear variance<y 2 (x.) > and cross-correlation < y(x,) y (x2) >

A, > _(A P Z ("x,) > + < ( '2) > - 2 (34)

<Y (XI) ,(,2 )>]-

Note that < y2 (xi) > and < y(x1 ) y (x2 ) > are respectively the diagonal
and off-diagonal elements of the covariance matrix < y(xi) y (x.) > (i,j

= 1,2). Hence, in terms of the covariance matrix, Equation 34 is a

practical prescription for computing < (Ay/Ax)2 >, especially, when Ax is

small.

Although the variance was computed in Section II, the cross-correlation

has not yet been discussed. For the simply supported Bernoulli-Euler

beam, < y(xl)y(x2 ) > can be written down immediately by replacing one of

the y(x)'s in Equation 21a by y(xI) and the other y(x) by y(x2 )

< y (X,)( ) o sin ( r sin ( rX KI . (35)I),:2)>= I L L nn
n=1
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With the use of x= x + Ax/2 and x2 = x - Ax/2, Equation 35 becomes

< X,(,),(, >)= ( n7rAx 2 (an7X) (36)

As a consistency check, the insertion of Equation 36 together with the

corresponding < y2(xi) > into Equation 34 reproduces the previously

defined angular vibration amplitude, the leading term of which is

Equation 30. This shows that Equation 34 is just another definition in

terms of the covariance matrix. Recall that the assumption of the

infinitely sharp forcing correlation, < q(x1)q(x2) >'-6 (xl-x 2), has been

invoked in Section 11-3. Therefore, one might suspect that < y(x1 )y(x2) >

would be fairly sharp. This however, turns out to be a false speculation

because of the structural rigidity, so that the spatial correlation

extends over the entire beam. As a typical example, let us compute the

cross-correlation about the midpoint of beam. Then, with the use of

nn= 11/n 4, Equation 36 takes the following form

< y (L/2 +Ax/2)y(L/2 -Ax/2)> = [F-G] KIll, (37)

odd 1 ( n rAx) eve n n" 7k )
where F: 4 Cos 2 and G : "- 1 sin2

n=I n n2 n

The square bracket of Equation 37 has the peak value at Ax 0 0, and falls

off to zero at the maximum separation Ax = L. It is, however, more

meaningful to examine the correlation coefficient,

< y(L/2 + Ax/2) y(L/2 - Ax/2) >
17 2

V/<y2 (L/2 + Ax/2)> (<y2 L/2-Ax/2) >

which becomes

F - G (38)

7 : F+G
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Since F and G are always positive, it follows that n < 1; the equality is
valid only when Ax = 0. The limiting value at Ax = L cannot be deduced
directly from Equation 38, for there it is indeterminate. However, it is
found by the asymptotic analysis that n = 1/2 at Ax = L. The presence
of spatial correlation over the entire beam is depicted in Figure 4.

In the remainder of this section, it will be shown that the prediction

scheme in Equation 33 also follows from Equation 34, thus demonstrating
consistency of that prediction. To the first-term truncation, the

variance and cross-correlation are

< ( ) Y = sin2  r ( x)]K
< y 2 ()> -

where y2(x > and < y2(x 2 ) > take the positive and negative signs,
respectively. Now, introduce Equation 39 into the right-hand side of
Equation 34. After averaging over the beam, one obtains

(K/K I, [ I - ( 2Cos?- ( V2 )I )KI 1  . (40)

By identifying K Iii with 2yrms2 it is evident that (2 cos2(1TAx/2L) - 1)
plays the role of a beam-averaged correlation coefficient. Further

consolidation of Equation 40 by factoring out K Ill ( = 2y2rms) yields

V' Yr mss 2(7r___X__)_)_____

(AY/Ax)rm Ax co 2 L(~) (41)

Since 2(1 - cos 2 (ffAx/2L) = 1 for Ax = L12, Equation 41 becomes
identical to Equation 33, thereby establishing the internal consistency

of Equation 33 by way of an alternate derivation.
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SECTION VI

CONCLUSIONS

By relating the linear and angular responses of structural vibration,
qualitative relationships have been developed to predict the rms amplitude
of angular vibration from a prescribed linear vibration response. The
prediction schemes have been proposed for the true angular and discrete
angular vibration amplitudes. Based on the presently available test
data, the overall performance of predictions is within +20% of the
angular vibration measurement. Although crude, such a prediction

capability is very satisfying. This is because the prediction schemes
are intended for qualitative purposes and the present test data are
limited only to gross confirmation. Since the present investigation is
a first attempt, the refinement of angular vibration predictions will

follow as more accurate vibration data become available.
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APPENDIX

STOCHASTIC ANALYSIS OF THE TIMOSHENKO BEAM

For a small amplitude vibration, the angle of rotation may be

approximated by 3y(x,t)/Dx; hence, the angular velocity and angular

acceleration are 92y/ax t and a3y/axat2 , respectively. The Timoshenko

beam equation which takes account of the angular damping and angular

inertial effects, is given by

a~ ~~ 2 2 y+ lay a' 4y =f (X,t). (Al)
at at m ax4 axt a x "

The last two terms of the left-hand side modify the Bernoulli-Euler

beam Equation 1. Here ' is the appropriate damping constant, I is the

moment of inertia, and a is the cross-section of beam. Although the
4 2 2angular inertial term, -(I/a) 4y/9x 2t , first appears in Rayleigh's

classical beam equation (Reference 11), it is Timoshenko (Reference 1)

who has investigated both the angular inertia and shearing deformation

effects in the early 1920's; hence Equation Al is referred to as a

Timoshenko beam equation. More recently, Samuels and Eringen (Reference

12) have considered the most general Timoshenko beam equation in

search for a convergent bending stress under purely random excitations.

For the simply supported case, the undamped normal modes of Equation

Al are still the same as the Bernoulli-Euler beam. Therefore, the

stochastic analysis of Section II can be repeated verbatim by starting

from the time-dependent equations

an Yn + 2 Yn Yn + Yn qn 9 t),

where an = 1 + (I/a) (nTT/L) 2 and yn = + B' (n7r/L) 2 (Compare this with

the Equation following Equations 2a and 2b in the main text). The

linear and angular variances are again given by Equations 10 and 12,

respectively, except for the modified Ink

rnk : fDFg[H M H *(w) dw, (A2)
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where H' (w) = 2 1 2 Under the white-noise spectrum

n n n

(Equation 15), the evaluation of Equation A2 yields

47r(Yn/an)FO
Ink (w2 _ _ 4y2/a ) 2 + (4Yn/an)(w an-yn2 ) '

which for n = k simplifies to

Inn =7r FO
4 wn (G+,R'(nr/L) (M)

Note that on does not appear in Equation A3; it is identical to
2

Equation 17 if is replaced by r + 3' (nq/L) . The inclusion of

angular effects has therefore resulted in more rapidly decreasing Inn

with respect to n, I nn- I/n 6; however, it has no effect on the
prediction schemes derived in the main text.
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